

Prospects for the Commercialization of Cellulosic Ethanol

Bill Schafer, Sr. Vice President – Business Development Range Fuels, Inc.

State Agriculture and Rural Leaders January 18-20, 2008 St. Louis, Missouri

Range Fuels Overview

- Formed in July 2006 by Khosla Ventures to commercialize cellulosic ethanol
 - Multi-sourced technology
- Supported by substantive federal, state and local incentives
 - DOE: \$76MM in a competitive evaluation
 - Other state and local incentives
- Development Center and K2A Pilot Plant complete
- Broke ground in Soperton, GA, for first U.S. commercial-scale cellulosic ethanol plant
- Additional sites and partnerships secured

Increasing Ethanol Demand and Support

- 60% growth in demand from 4 Bn GPY in 2005 to 6.6 Bn GPY in 2007
- Strong, bipartisan support for cellulosic biofuels
 - Recent passage of "Energy Independence and Security Act of 2007"
 - 36 Bn GPY by 2022 includes 21 Bn GPY of Advanced Biofuels
 - Increased cellulosic credits likely in new Farm Bill in 2008 (\$0.64/gal)

- Higher demand for E85 fuel as FFVs are more widely adopted
 - By 2012 U.S. automakers have committed to% of production to FFVs

DOE Est. Corn Max. Volume

□ Corn-Based □ Advanced Biofuels - Non Corn-Based

Source: Renewable Fuels Association

U.S. Cellulosic Ethanol Potential

- 140 Bn GPY 2005 U.S. DOE/USDA Study
 - Agricultural 100 Bn gpy
 - Crop residues, perennial crops, animal manure, process residues and grains used for biofuels
 - Forestlands 40 Bn gpy
 - Wood and paper & pulp processing residues, logging and site clearing residues, fuel treatment thinnings
- Total U.S. Gasoline Consumption
 - 140 Bn gpy
 - President's goal 35 Bn gpy alternative fuels by 2017

Worldwide Cellulosic Ethanol Potential

- Total Worldwide Gasoline Consumption
 - 300 Bn gpy vs. 140 Bn gpy from U.S.
- Assessments Underway Globally

Range Fuels' Business

- Focus
 - Green energy
 - Cellulosic ethanol
- Business Model
 - Design
 - Build
 - Own
 - Operate
- Global Presence

Key Highlights

- Thermo-chemical based technology with a developmental headstart
 - Economically competitive without subsidies from inception
- Low marginal cost of production
- Feedstock flexibility
 - Feedstock advantage of woody biomass
- Highly scalable business model; replicable plant modules
- Environmentally friendly production process
- Access to economic development funds and additional legislative measures that support development of cellulosic ethanol technologies
- Experienced management team and strategic investors and partners

Operational Facilities

- 4 generations of biomass conversion testing environments
- Catalyst testing facilities
 - CC10's

CC100

- CC400
- CC1000

Pilot-scale

K2A Optimization Plant

K2A Optimization Plant

Management Team

- Proven Leadership from High Tech, Renewable Energy Industries and Tech-Intensive Coal, Coal Gasification, and Gas-to-Liquids Industries
 - Mitch Mandich, CEO Apple Computer
 - Rick Winsor, President & COO Horizon Wind Energy
 - Kevin Biehle, V.P. Production VeraSun; BASF
 - Mike Cate, V.P. Procurement & Fabrication Washington Group
 - Arie Geertsema, Sr. V.P. Technology CAER; Sasol
 - Dan Hannon, CFO Reliant Energy, Exxon
 - Bud Klepper, Chief Technical Specialist Inventor
 - Larry Robinson, V.P. Projects Bechtel
 - Bill Schafer, Sr. V.P. Business Development NexGen

Limitations of Current Technology

- Current production technologies use corn or sugarcane
 - Limited max. capacity (corn 15 BGY); high cost
 - Import tax of \$0.54/gallon

Food versus fuel

- Low land efficiency for fuel production
- Sharp increase in feedstock prices
- Depleting water tables
- Wide price fluctuations due to weather
- Resistance from animal feed lobby

Low fossil energy ratios

- Corn at 1 to 1.4 input to output
- Sugarcane ethanol at 1 to 8
- Cellulosic ethanol at 1 to 10

Range Fuels' Technology

- Cheaper than gasoline, unsubsidized
- Cheaper, less volatile feedstock
- Flexible "high volume" feedstock supply
 - Wood chipsSwitchgrass
 - Municipal wasteCorn stover
 - Industrial wasteOlive pits
 - ManureCoal
- Environmentally superior

Volatility: Corn vs. Pulpwood Prices

Sources: Bloomberg and Pöyry

Stable Pricing, Large Availability Using Woody Biomass

- Over 400 MM tons of "low cost" woody biomass available annually
- High land efficiency for cellulosic crops; low water and fertilizer inputs
- Cellulosic availability fits demand; fewer transportation issues
- Little competition for feedstock as paper mills decline

Differentiated Technology

- Proven two-step thermo-chemical process
- Highest yield of ethanol per ton of feedstock

K2 System Configuration

Environmentally Friendly Production Process

- Soperton: minor emissions source permit 500
 - Only one waste stream: saleable char
- Lower water use
 - 25% of typical corn-ethanol plant
 - Reduces purification costs and impact
- Material land use benefits
 - Polyculture "compatible"
 - Better yields, biodiversity, low inputs

World's First Commercial Cellulosic Plant

Soperton, GA: World's First Commercial Cellulosic Plant

- Wetlands:
 Will be protected and left undisturbed
- 2 Range Fuels Drive:
 Specially created road that separates plant operations from the wetlands
- Feedstock Receiving and Storage:
 Receipt and storage of wood chips
- Conveyor System:
 Moves feedstock from receiving and storage area to modular converters
- Biomass Converters:
 Convert wood chips to syngas
- 6 Catalytic Converters:
 Transform the syngas into alcohols, which are then separated and processed
- 7 Product Storage:
 Collection and storage of liquids (ethanol and methanol)
- 8 Loading and Delivery:
 Transportation by either truck or rail

Soperton Plant – Site Work

Soperton Plant – Artist's Rendering

Soperton Plant – Groundbreaking

Soperton Plant – Groundbreaking

Soperton Plant – Site Clearing

Soperton Plant – Woody Biomass Feedstock

