Prospects for the Commercialization of Cellulosic Ethanol

Bill Schafer, Sr. Vice President – Business Development
Range Fuels, Inc.

State Agriculture and Rural Leaders
January 18-20, 2008
St. Louis, Missouri
Range Fuels Overview

- Formed in July 2006 by Khosla Ventures to commercialize cellulosic ethanol
 - Multi-sourced technology

- Supported by substantive federal, state and local incentives
 - DOE: $76MM in a competitive evaluation
 - Other state and local incentives

- Development Center and K2A Pilot Plant complete

- Broke ground in Soperton, GA, for first U.S. commercial-scale cellulosic ethanol plant

- Additional sites and partnerships secured
Increasing Ethanol Demand and Support

- 60% growth in demand from 4 Bn GPY in 2005 to 6.6 Bn GPY in 2007

- Strong, bipartisan support for cellulosic biofuels
 - Recent passage of “Energy Independence and Security Act of 2007”
 - 36 Bn GPY by 2022 includes 21 Bn GPY of Advanced Biofuels
 - Increased cellulosic credits likely in new Farm Bill in 2008 ($0.64/gal)

- Higher demand for E85 fuel as FFVs are more widely adopted
 - By 2012 U.S. automakers have committed to% of production to FFVs

![Bar chart](chart.png)

Source: Renewable Fuels Association
U.S. Cellulosic Ethanol Potential

- 140 Bn GPY – 2005 U.S. DOE/USDA Study
 - Agricultural 100 Bn gpy
 - Crop residues, perennial crops, animal manure, process residues and grains used for biofuels
 - Forestlands 40 Bn gpy
 - Wood and paper & pulp processing residues, logging and site clearing residues, fuel treatment thinnings

- Total U.S. Gasoline Consumption
 - 140 Bn gpy
 - President’s goal - 35 Bn gpy alternative fuels by 2017
Worldwide Cellulosic Ethanol Potential

- Total Worldwide Gasoline Consumption
 - 300 Bn gpy vs. 140 Bn gpy from U.S.

- Assessments Underway Globally
Range Fuels’ Business

- **Focus**
 - Green energy
 - Cellulosic ethanol

- **Business Model**
 - Design
 - Build
 - Own
 - Operate

- **Global Presence**
Key Highlights

- Thermo-chemical based technology with a developmental headstart
 - Economically competitive without subsidies from inception
- Low marginal cost of production
- Feedstock flexibility
 - Feedstock advantage of woody biomass
- Highly scalable business model; replicable plant modules
- Environmentally friendly production process
- Access to economic development funds and additional legislative measures that support development of cellulosic ethanol technologies
- Experienced management team and strategic investors and partners
Operational Facilities

- 4 generations of biomass conversion testing environments
- Catalyst testing facilities
 - CC10’s
 - CC100
- Pilot-scale
 - K2A Optimization Plant

K2A Optimization Plant

- Mitch Mandich, CEO – Apple Computer
- Rick Winsor, President & COO – Horizon Wind Energy
- Kevin Biehle, V.P. Production – VeraSun; BASF
- Mike Cate, V.P. Procurement & Fabrication – Washington Group
- Arie Geertsema, Sr. V.P. Technology – CAER; Sasol
- Dan Hannon, CFO – Reliant Energy, Exxon
- Bud Klepper, Chief Technical Specialist – Inventor
- Larry Robinson, V.P. Projects - Bechtel
- Bill Schafer, Sr. V.P. Business Development – NexGen
Limitations of Current Technology

- Current production technologies use corn or sugarcane
 - Limited max. capacity (corn 15 BGY); high cost
 - Import tax of $0.54/gallon

- Food versus fuel
 - Low land efficiency for fuel production
 - Sharp increase in feedstock prices
 - Depleting water tables
 - Wide price fluctuations due to weather
 - Resistance from animal feed lobby

- Low fossil energy ratios
 - Corn at 1 to 1.4 input to output
 - Sugarcane ethanol at 1 to 8
 - Cellulosic ethanol at 1 to 10

Corn Prices

Source: Bloomberg
Range Fuels’ Technology

- Cheaper than gasoline, unsubsidized
- Cheaper, less volatile feedstock
- Flexible “high volume” feedstock supply
 - Wood chips
 - Municipal waste
 - Industrial waste
 - Manure
 - Switchgrass
 - Corn stover
 - Olive pits
 - Coal
- Environmentally superior

Volatility: Corn vs. Pulpwood Prices

Sources: Bloomberg and Pöyry
Stable Pricing, Large Availability Using Woody Biomass

- Over 400 MM tons of “low cost” woody biomass available annually
- High land efficiency for cellulosic crops; low water and fertilizer inputs
- Cellulosic availability fits demand; fewer transportation issues
- Little competition for feedstock as paper mills decline

U.S. Ethanol Biorefinery Locations

Non-Federal Forest Land Density, 1997
Differentiated Technology

- Proven two-step thermo-chemical process
- Highest yield of ethanol per ton of feedstock

K2 System Configuration

1. **Step 1: Biomass Converter**
 - Devolatilization
 - Reforming
 - Conditioning

2. **Step 2: Catalytic Converter**
 - Catalysis
 - Distillation / Fractionation

- **Feedstock Storage**
- **Feedstock Handling**
- **Syngas**
- **Ethanol & Methanol**
- **Product Storage**
- **Shipment to Market**

Process Time <30 min

“Self-Sustaining” Tailgas
Soperton: minor emissions source permit
 — Only one waste stream: saleable char

Lower water use
 — 25% of typical corn-ethanol plant
 — Reduces purification costs and impact

Material land use benefits
 — Polyculture “compatible”
 — Better yields, biodiversity, low inputs
World’s First Commercial Cellulosic Plant
Soperton, GA: World’s First Commercial Cellulosic Plant

1. **Wetlands**: Will be protected and left undisturbed
2. **Range Fuels Drive**: Specially created road that separates plant operations from the wetlands
3. **Feedstock Receiving and Storage**: Receipt and storage of wood chips
4. **Conveyor System**: Moves feedstock from receiving and storage area to modular converters
5. **Biomass Converters**: Convert wood chips to syngas
6. **Catalytic Converters**: Transform the syngas into alcohols, which are then separated and processed
7. **Product Storage**: Collection and storage of liquids (ethanol and methanol)
8. **Loading and Delivery**: Transportation by either truck or rail
Soperton Plant – Site Work
Soperton Plant – Artist’s Rendering
Soperton Plant – Groundbreaking
Soperton Plant – Groundbreaking
Soperton Plant – Site Clearing
Soperton Plant – Woody Biomass Feedstock